Schulze, E.-D.; Prentice, I. C.: Max-Planck-Institut für Biogeochemie. In: Jahrbuch 1999 der Max-Planck-Gesellschaft zur Förderung der Wissenschaften, S. 455 - 463. Vandenhoeck & Ruprecht, Göttingen (1999)
Neilson, R. P.; Prentice, I. C.; Smith, B.: Simulated changes in vegetation distribution under global warming. In: The regional impacts of climate change: An assessment of vulnerability, S. 439 - 456 (Hg. Watson, R. T.). Cambridge University Press, Cambridge (1998)
Ruddiman, W. F.; Kutzbach, J. E.; Prentice, I. C.: Testing the climatic effects of orography and CO2 with general circulation and biome models. In: Tectonic uplift and climate change, S. 204 - 235 (Hg. Ruddiman, W. F.). Plenum, New York (1997)
Zwenzner, H.: Simulation of fire-vegetation-rainfall interactions in the Australian Wet-Dry Tropics, using a regional fire model linked to a DGVM. Diplom, 70 S., Friedrich-Schiller-Universität, Jena (2004)
Zur COP27 in Ägypten reisten auch neun Max-Planck-Wissenschaftlerinnen und -Wissenschaftler, unter Ihnen Dr. Carlos Sierra, Gruppenleiter am Max-Planck-Institut für Biogeochemie in Jena. Im Interview vermittelt Tom Sparks Eindrücke und Einschätzungen zur Rolle der Wissenschaft.
At the Amazon Tall Tower Observatory (ATTO), the research station of a joint German-Brazilian project in the Brazilian rainforest, scientists have been studying the ecosystems of the Amazon and their interactions with the atmosphere and climate for more than 10 years. Recently, representatives of the Brazilian Ministry of Research and foreign ambassadors visited the station.
Within the framework of the German-Brazilian joint project ATTO (Amazon Tall Tower Observatory) with its research station in the Brazilian rainforest, scientists for several years have gained valuable data and insights for climate and environmental research. For German partners, the Max Planck Society will continue to ensure the operation of the station and the research. In addition, the German Federal Ministry of Education and Research (BMBF) will fund the project for another three years with around 5 million euros through ATTO+.
Wissenschaftler*innen schlagen eine alternative Strategie zur Kontrolle der Treibhausgase und des globalen Klimasystems vor, die Konzepte aus der Regelungstheorie, insbesondere die Regelung durch geschlossene Kreisläufe, aufgreift. Sie zeigen damit, wie die Zunahme von Kohlendioxid in der Atmosphäre als ein Problem der Staukontrolle behandelt werden kann.
On the menu for slugs are not only mosses, lichens and garden vegetables, but also miniscule oribatid mites, which they unavoidably take in with their food. Astonishingly, most of these tiny arachnids survive the voyage through the slug's digestive system without harm and are excreted, alive, elsewhere in the ecosystem. Scientists led by Dr Manfred…
Forests fulfil numerous important functions, and do so particularly well if they are rich in different species of trees. This is the result of a new study. In addition, forest managers do not have to decide on the provision of solely one service – such as wood production or nature conservation – as a second study demonstrates: several services…
Wälder erfüllen zahlreiche wichtige Funktionen dann besonders gut, wenn sie reich an unterschiedlichen Baumarten sind. Dies ist das Ergebnis einer neuen Studie. Zudem muss man sich bei der Bewirtschaftung des Waldes nicht für ausschließlich eine Leistung – wie Holzproduktion oder Naturschutz – entscheiden, wie eine zweite Studie zeigt: Mehrere…
The successful independent research group (Max Planck Research Group) was recently extended for two more years. While a strong emphasis will remain on the evolution of early algae, the researchers are planning to increase their focus on the evolutionary role of nutrient accessibility, in particular nitrogen, and on reconstructing the evolution of the steroid biosynthetic pathway.
In this country, we take clean drinking water for granted. More than two-thirds comes from groundwater. But how secure are these essential subsurface water reservoirs in view of intensive land use, environmental pollution and climate change? Researchers are looking into this issue in the Collaborative Research Centre (CRC) ‘AquaDiva’. Started in 2013, the research partnership will continue to be supported by the German Research Foundation (DFG) for the next four years, receiving over 9.5 million euros for the funding period to 2021.
Fine roots are a substantial but transitory carbon pool in many ecosystems and highly responsive to seasonal and environmental forcings. However they are also difficult to study, as roots are often highly spatially heterogeneous and direct sampling is very slow. Consequently, representation of roots in vegetation models is often highly simplistic. To address this knowledge gap, MPI-BGC postdoc Richard Nair had successfully applied for a Marie Curie Individual Fellowship. His project MrPARTS will be fully funded by EU for 2 years, starting in June 2017.
The Max Planck Society supports a new Partner Group between the Max Planck Institute for Biogeochemistry (MPI-BGC), Jena, Germany, and the Indian Institute of Science Education and Research, Bhopal (IISER-B), India. The partner group‘s program aims at implementing and further developing a high-resolution inversion framework to quantify CO2 and CH4 sources and sinks that are consistent with atmospheric observations. The focus will be on the Indian subcontinent.
In a second period over the next four years, the German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig will receive funding through the German Research Foundation (DFG). Established in 2012, the center has grown to an internationally respected and leading research institution in the field of biodiversity.