Kunstler, G.; Guyennon, A.; Ratcliffe, S.; Rüger, N.; Ruiz-Benito, P.; Childs, D. Z.; Dahlgren, J.; Lehtonen, A.; Thuiller, W.; Wirth, C.et al.; Zavala, M. A.; Salguero-Gomez, R.: Demographic performance of European tree species at their hot and cold climatic edges. Journal of Ecology 109 (2), S. 1041 - 1054 (2021)
Haack, N.; Grimm‐Seyfarth, A.; Schlegel, M.; Wirth, C.; Bernhard, D.; Brunk, I.; Henle, K.: Patterns of richness across forest beetle communities—A methodological comparison of observed and estimated species numbers. Ecology and Evolution 11 (1), S. 626 - 635 (2021)
Richter, R.; Hutengs, C.; Wirth, C.; Bannehr, L.; Vohland, M.: Detecting tree species effects on forest canopy temperatures with thermal remote sensing: The role of spatial resolution. Remote Sensing 13 (1), 135 (2021)
Volf, M.; Weinhold, A.; Seifert, C. L.; Holicová, T.; Uthe, H.; Alander, E.; Richter, R.; Salminen, J.-P.; Wirth, C.; van Dam, N. M.: Branch-localized induction promotes efficacy of volatile defences and herbivore predation in trees. Journal of Chemical Ecology 47, S. 99 - 111 (2021)
Ma, X.; Migliavacca, M.; Wirth, C.; Bohn, F. J.; Huth, A.; Richter, R.; Mahecha, M. D.: Monitoring plant functional diversity using the reflectance and echo from space. Remote Sensing 12 (8), 1248 (2020)
Freiberg, M.; Winter, M.; Gentile, A.; Zizka, A.; Muellner-Riehl, A. N.; Weigelt, A.; Wirth, C.: LCVP, the Leipzig catalogue of vascular plants, a new taxonomic reference list for all known vascular plants. Scientific Data 7, 416 (2020)
Kretz, L.; Seele, C.; van der Plas, F.; Weigelt, A.; Wirth, C.: Leaf area and pubescence drive sedimentation on leaf surfaces during flooding. Oecologia 193, S. 535 - 545 (2020)
Kupers, S. J.; Wirth, C.; Engelbrecht, B. M. J.; Hernández, A.; Condit, R.; Wright, S. J.; Rüger, N.: Performance of tropical forest seedlings under shade and drought: an interspecific trade-off in demographic responses. Scientific Reports 9, 18784 (2019)
Kupers, S. J.; Wirth, C.; Engelbrecht, B. M. J.; Rüger, N.: Dry season soil water potential maps of a 50 hectare tropical forest plot on Barro Colorado Island, Panama. Scientific Data 6, 63 (2019)
Barry, K. E.; Mommer, L.; van Ruijven, J.; Wirth, C.; Wright, A. J.; Bai, Y. F.; Connolly, J.; De Deyn, G. B.; de Kroon, H.; Isbell, F.et al.; Milcu, A.; Roscher, C.; Scherer-Lorenzen, M.; Schmid, B.; Weigelt, A.: The future of complementarity: disentangling causes from consequences. Trends in Ecology and Evolution 34 (2), S. 167 - 180 (2019)
Pietsch, K. A.; Eichenberg, D.; Nadrowski, K.; Bauhus, J.; Buscot, F.; Purahong, W.; Wipfler, B.; Wubet, T.; Yu, M.; Wirth, C.: Wood decomposition is more strongly controlled by temperature than by tree species and decomposer diversity in highly species rich subtropical forests. Oikos 128 (5), S. 701 - 715 (2019)
Marra, D. M.; Trumbore, S. E.; Higuchi, N.; Ribeiro, G. H. P. M.; Negrón‐Juárez, R. I.; Holzwarth, F.; Rifai, S. W.; Santos, J. d.; Lima, A. J. N.; Kinupp, V. F.et al.; Chambers, J. Q.; Wirth, C.: Windthrows control biomass patterns and functional composition of Amazon forests. Global Change Biology 24 (12), S. 5867 - 5881 (2018)
Kupers, S. J.; Engelbrecht, B. M. J.; Hernández, A.; Wright, S. J.; Wirth, C.; Rüger, N.: Growth responses to soil water potential indirectly shape local species distributions of tropical forest seedlings. Journal of Ecology 107 (2), S. 860 - 874 (2018)
Eine Studie der Universität Leipzig, des Deutschen Zentrums für integrative Biodiversitätsforschung Halle-Jena-Leipzig (iDiv) und des MPI für Biogeochemie zeigt, dass Lücken im Kronendach eines Auenmischwalds einen direkten Einfluss auf die Temperatur und Feuchtigkeit im Waldboden haben, jedoch nur geringe Auswirkungen auf die Bodenaktivität.
EU fördert internationales Forschungsprojekt AI4PEX, um Erdsystemmodelle und damit wissenschaftliche Vorhersagen des Klimawandels weiter zu verbessern. Beteiligte Wissenschaftler*innen aus 9 Ländern trafen sich bereits Ende Mai 2024 zum Projektstart am federführenden MPI für Biogeochemie in Jena.
Eine neue Studie zeigt eine natürliche Lösung zur Abschwächung von Auswirkungen des Klimawandels wie extremen Wetterereignissen auf. Forschende fanden heraus, dass eine vielfältige Pflanzenwelt als Puffer gegen Schwankungen der Bodentemperatur wirkt. Dieser Puffer wiederum kann einen entscheidenden Einfluss auf wichtige Ökosystemprozesse haben.
Die Umsatzzeiten des Kohlenstoffs an Land bestimmen die Auswirkungen von Klima-veränderungen auf die Landoberfläche. Die Temperaturempfindlichkeit des Kohlen-stoffumsatzes ist daher von entscheidender Bedeutung. Unsere neue Studie belegt, dass die Feuchtebedingungen die Temperaturempfindlichkeit der Kohlenstoffumsatzzeiten stark verändern.
Eine neue Studie zeigt, dass bereits ein geringer Anstieg des atmosphärischen CO2 zu erkennbaren Auswirkungen auf die Funktionsweise von Ökosystemen führt. Anhand von Simulationen des am Max-Planck-Institut für Biogeochemie entwickelten Landoberflächenmodells hat ein internationales Team von Wissenschaftler*innen herausgefunden, dass ein erhöhter CO2-Gehalt zunächst Kenngrößen des Kohlenstoffkreislaufs wie die Produktivität der Vegetation und die Ausdehnung der Blattfläche beeinflusst.
Diese Pressemitteilung wurde uns freundlicherweise von der TUM zur Verfügung gestellt.
Der Klimawandel bringt Wälder zunehmend unter Druck. Ausgelöst durch Klimaextreme sind in Mitteleuropa in den letzten Jahren große Waldflächen abgestorben. Forschende unter Beteiligung der Technischen Universität München (TUM) haben nun die erste Klimarisikokarte…
Wichtige Leistungen von Ökosystemen werden künftig zunehmend von der Wasserverfügbarkeit abhängen. Anhand aktueller Simulationen mit Klimamodellen fand ein internationales Forscherteam mehrere Regionen, in denen Wasser zunehmend die Ökosysteme limitiert. Darunter auch Zentraleuropa, der Amazonas und West-Russland.
Ein internationales Forschungsteam hat drei Schlüsselindikatoren ermittelt, die die Funktionsweise terrestrischer Ökosysteme beschreiben. Das Monitoring dieser drei Kennzeichen ermöglicht es, einzuschätzen, wie anpassungsfähig ein Ökosystem gegenüber Klima- und Umweltveränderungen ist und wie es sich unter bestimmten Bedingungen weiterentwickeln kann.
Ökosysteme erbringen vielfältige Dienstleistungen für den Menschen. Diese hängen von grundlegenden Ökosystemfunktionen ab, die sowohl durch das vorherrschende Klima und Artenvorkommen als auch durch menschliche Eingriffe beeinflusst werden. Ein großes internationales Forschungsteam unter der Leitung des Max-Planck-Instituts für Biogeochemie (MPI-BGC) in Jena hat drei Schlüsselindikatoren ermittelt, die die Funktionsweise terrestrischer Ökosysteme beschreiben.
Die Regenwälder gehen durch Abholzung und Landnutzung verloren. Damit sinkt ihre Widerstandsfähigkeit gegenüber dem Klimawandel und sie werden anfälliger für Dürren und Waldbrände. Ein neues Frühwarnsystem reagiert auf die unterschiedlichen Gegebenheiten der Regenwälder.
ESM2025, ein ehrgeiziges europäisches Projekt zur Unterstützung der Erdsystemmodellierung, startete offiziell. Das MPI-BGC beteiligt sich mit Dr. Sönke Zaehle und Dr. Nuno Carvalhais, die ihre Expertise in terrestrischer Biogeochemie bzw. Maschinen-Lernen einbringen werden.
Max-Planck-Forscher und Kollegen haben eine langjährige Kontroverse über den Ursprung komplexen Lebens auf der Erde gelöst. Sie fanden heraus, dass fossile Fettmoleküle, die aus 635 Millionen Jahre alten Gesteinen isoliert wurden, nicht die frühesten Hinweise auf Tiere darstellen. Die fossilen Moleküle entstehen durch geologische Prozesse aus Vorläufer-Molekülen gewöhnlicher Algen.