Flessa, H.; Amelung, W.; Helfrich, M.; Wiesenberg, G. L. B.; Gleixner, G.; Brodowski, S.; Rethemeyer, J.; Kramer, C.; Grootes, P. M.: Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A synthesis. Journal of Plant Nutrition and Soil Science 171 (1), S. 36 - 51 (2008)
Marschner, B.; Brodowski, S.; Dreves, A.; Gleixner, G.; Gude, A.; Grootes, P. M.; Hamer, U.; Heim, A.; Jandl, G.; Ji, R.et al.; Kaiser, K.; Kalbitz, K.; Kramer, C.; Leinweber, P.; Rethemeyer, J.; Schaeffer, A.; Schmidt, M. W. I.; Schwark, L.; Wiesenberg, G. L. B.: How relevant is recalcitrance for the stabilization of organic matter in soils? Journal of Plant Nutrition and Soil Science 171 (1), S. 91 - 110 (2008)
Kramer, C.; Gleixner, G.: Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biology and Biochemistry 38 (11), S. 3267 - 3278 (2006)
Kramer, C.; Kreisel, G.; Fahr, K.; Käßbohrer, J.; Schlosser, D.: Degradation of 2-fluorophenol by the brown-rot fungus Gloeophyllum striatum: evidence for the involvement of extracellular Fenton chemistry. Applied Microbiology and Biotechnology 64 (3), S. 387 - 395 (2004)
Rethemeyer, J.; Grootes, P. M.; Bruhn, F.; Andersen, N.; Nadeau, M. J.; Kramer, C.; Gleixner, G.: Age heterogeneity of soil organic matter. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223-224, S. 521 - 527 (2004)
Gleixner, G.; Kramer, C.; Hahn, V.; Sachse, D.: The effect of biodiversity on carbon storage in soils. In: Forest diversity and function: temperate and boreal systems, Bd. 176, S. 165 - 183 (Hg. Scherer-Lorenzen, M.; Körner, C.; Schulze, E. D.). Springer, Berlin (2005)
Gleixner, G.; Czimczik, C. I.; Kramer, C.; Lühker, B.; Schmidt, M. W. I.: Plant compounds and their turnover and stability as soil organic matter. In: Global biogeochemical cycles in the climate system, S. 201 - 215 (Hg. Schulze, E.-D.; Heimann, M.; Harrison, S. P.; Holland, E.; Lloyd, J. et al.). Academic Press, San Diego (2001)
Am 29. April 2025 wurde der BIOMASS-Satellit erfolgreich in die Umlaufbahn gebracht. Die BIOMASS-Mission dient der Kartierung und Überwachung globaler Wälder. Sie soll die Struktur verschiedener Waldtypen kartieren und Daten zur oberirdischen Biomasse liefern.
Am 29. April 2025 wurde der BIOMASS-Satellit erfolgreich in die Umlaufbahn gebracht. Die BIOMASS-Mission dient der Kartierung und Überwachung globaler Wälder. Sie soll die Struktur verschiedener Waldtypen kartieren und Daten zur oberirdischen Biomasse liefern.
Europa ist durch Dürren oder Starkregen besonders stark betroffen. KI kann Frühwarnsysteme für Extremwetterereignisse und deren Folgen unterstützen und dadurch Schäden minimieren.
Dank FLUXCOM-X, der nächsten Generation Daten-getriebener, KI-basierter Erdsystemmodelle, können Forschende den Stoffwechsel der Erde nun in noch nie dagewesener Detailtiefe sehen – überall an Land und zu jeder Stunde des Tages.
Extreme Klimaereignisse gefährden die Qualität und Stabilität des Grundwassers, wenn Regenwasser die natürlichen Filterprozesse im Boden umgeht. Dies wurde in einer Langzeitstudie des Grundwassers mit neuen Analysemethoden nachgewiesen.
Extreme Niederschläge sollten bei wärmeren Temperaturen stärker werden. Messdaten aus den Tropen zeigen, dass die abkühlende Wirkung von Wolken diesen Zusammenhang verschleiert. Korrigiert man die Wolkeneffekte, wird klar dass steigende Temperaturen extreme Niederschläge verstärken.
Im alljährlichen Ranking der weltweit meistzitierten und damit einflussreichen Wissenschaftler*innen sind 2024 erneut fünf Autoren unseres Instituts vertreten.
Das Global Carbon Project zeigt, dass die fossilen CO2-Emissionen auch 2024 weiter ansteigen. Es fehlen Anzeichen für den schnellen und starken Rückgang der Emissionen, der nötig wäre, um die Auswirkungen des Klimawandels einzugrenzen.
Der Klimawandel verändert die globalen Wasserkreisläufe. Dabei wird der Regen anders verteilt: In der Mittelmeerregion kommt es einerseits zu längeren und intensiveren Dürren und andererseits zu mehr und heftigerem Starkregen. Modelle mit höherer Auflösung sollen Wetterextreme regional und lokal ebenso präzise voraussagen wie die Auswirkungen unter anderem auf die Landwirtschaft.
Eine aktuelle Studie deutet darauf hin, dass nicht zunehmende Dürren in den Tropen und veränderte Reaktionen des Kohlenstoffkreislaufs aufgrund des Klimawandels für die starke Reaktion der Tropen auf steigenden Temperaturen verantwortlich sind. Stattdessen könnten wenige aber besonders starke El Niño- Ereignisse dafür verantwortlich sein.