Schulze, E.-D.; Wirth, C.; Mollicone, D.; Ziegler, W.: Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia 146 (1), S. 77 - 88 (2005)
Schulze, W. X.; Gleixner, G.; Kaiser, K.; Guggenberger, G.; Mann, M.; Schulze, E.-D.: A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 142 (3), S. 335 - 343 (2005)
Spehn, E. M.; Hector, A.; Joshi, J.; Scherer-Lorenzen, M.; Schmid, B.; Bazeley-White, E.; Beierkuhnlein, C.; Caldeira, M. C.; Diemer, M.; Dimitrakopoulos, P. G.et al.; Finn, J. A.; Freitas, H.; Giller, P. S.; Good, J.; Harris, R.; Högberg, P.; Huss-Danell, K.; Jumpponen, A.; Koricheva, J.; Leadley, P. W.; Loreau, M.; Minns, A.; Mulder, C. P. H.; O'donovan, G.; Otway, S. J.; Palmborg, C.; Pereira, J. S.; Pfisterer, A. B.; Prinz, A.; Read, D. J.; Schulze, E.-D.; Siamantziouras, A.-S. D.; Terry, A. C.; Troumbis, A. Y.; Woodward, F. I.; Yachi, S.; Lawton, J. H.: Ecosystem effects of biodiversity manipulations in European grasslands. Ecological Monographs 75 (1), S. 37 - 63 (2005)
Van Dijk, A. I. J. M.; Dolman, A. J.; Schulze, E.-D.: Radiation, temperature, and leaf area explain ecosystem carbon fluxes in boreal and temperate European forests. Global Biogeochemical Cycles 19 (2), S. GB2029 (2005)
Vetter, M.; Wirth, C.; Böttcher, H.; Churkina, G.; Schulze, E.-D.; Wutzler, T.; Weber, G.: Partitioning direct and indirect human-induced effects on carbon sequestration of managed coniferous forests using model simulations and forest inventories. Global Change Biology 11 (5), S. 810 - 827 (2005)
Czimczik, C. I.; Schmidt, M. W. I.; Schulze, E.-D.: Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests. European Journal of Soil Science 56 (3), S. 417 - 428 (2004)
Roscher, C.; Schumacher, J.; Baade, J.; Wilcke, W.; Gleixner, G.; Weisser, W. W.; Schmid, B.; Schulze, E.-D.: The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic and Applied Ecology 5 (2), S. 107 - 121 (2004)
Wirth, C.; Schumacher, J.; Schulze, E.-D.: Generic biomass functions for Norway spruce in Central Europe - a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology 24 (2), S. 121 - 139 (2004)
Wright, I. J.; Groom, P. K.; Lamont, B. B.; Poot, P.; Prior, L. D.; Reich, P. B.; Schulze, E.-D.; Veneklaas, E. J.; Westoby, M.: Leaf trait relationships in Australian plant species. Functional Plant Biology 31 (5), S. 551 - 558 (2004)
Czimczik, C. I.; Preston, C. M.; Schmidt, M. W. I.; Schulze, E.-D.: How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Stocks, molecular structure, and conversion to black carbon (charcoal). Global Biogeochemical Cycles 17 (1), 1020 (2003)
Dertinger, U.; Schaz, U.; Schulze, E.-D.: Age-dependence of the antioxidative system in tobacco with enhanced glutathione reductase activity or senescence-induced production of cytokinins. Physiologia Plantarum 119 (1), S. 19 - 29 (2003)
Knohl, A.; Schulze, E.-D.; Kolle, O.; Buchmann, N.: Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agricultural and Forest Meteorology 118 (3-4), S. 151 - 167 (2003)
Knorre, A. A.; Vaganov, E. A.; Shashkin, A. V.; Schulze, E. D.: A method of theoretical and experimental evaluation of carbon accumulation in bog ecosystems. Doklady Biological Sciences 388, S. 49 - 51 (2003)
Santruckova, H.; Bird, M. I.; Kalaschnikov, Y. N.; Grund, M.; Elhottova, D.; Simek, M.; Grigoryev, S.; Gleixner, G.; Arneth, A.; Schulze, E.-D.et al.; Lloyd, J.: Microbial characteristics of soils on a latitudinal transect in Siberia. Global Change Biology 9 (7), S. 1106 - 1117 (2003)
Scherer-Lorenzen, M.; Palmborg, C.; Prinz, A.; Schulze, E.-D.: The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84 (6), S. 1539 - 1552 (2003)
Am 29. April 2025 wurde der BIOMASS-Satellit erfolgreich in die Umlaufbahn gebracht. Die BIOMASS-Mission dient der Kartierung und Überwachung globaler Wälder. Sie soll die Struktur verschiedener Waldtypen kartieren und Daten zur oberirdischen Biomasse liefern.
Dank FLUXCOM-X, der nächsten Generation Daten-getriebener, KI-basierter Erdsystemmodelle, können Forschende den Stoffwechsel der Erde nun in noch nie dagewesener Detailtiefe sehen – überall an Land und zu jeder Stunde des Tages.
Das Global Carbon Project zeigt, dass die fossilen CO2-Emissionen auch 2024 weiter ansteigen. Es fehlen Anzeichen für den schnellen und starken Rückgang der Emissionen, der nötig wäre, um die Auswirkungen des Klimawandels einzugrenzen.
Eine aktuelle Studie deutet darauf hin, dass nicht zunehmende Dürren in den Tropen und veränderte Reaktionen des Kohlenstoffkreislaufs aufgrund des Klimawandels für die starke Reaktion der Tropen auf steigenden Temperaturen verantwortlich sind. Stattdessen könnten wenige aber besonders starke El Niño- Ereignisse dafür verantwortlich sein.
EU fördert internationales Forschungsprojekt AI4PEX, um Erdsystemmodelle und damit wissenschaftliche Vorhersagen des Klimawandels weiter zu verbessern. Beteiligte Wissenschaftler*innen aus 9 Ländern trafen sich bereits Ende Mai 2024 zum Projektstart am federführenden MPI für Biogeochemie in Jena.
Vom griechischen Philosophen Aristoteles über Charles Darwin bis heute haben sich Wissenschaftlerinnen und Wissenschaftler mit dieser grundlegenden Frage der Biologie beschäftigt. Entgegen der öffentlichen Wahrnehmung ist sie jedoch immer noch weitgehend ungelöst. Forschende haben nun einen neuen Ansatz für das Auffinden und die Abgrenzung von Arten mithilfe von künstlicher Intelligenz (KI) vorgestellt.
Ein Forschungsteam unter der Leitung des Deutschen Zentrums für integrative Biodiversitätsforschung (iDiv) und der Universität Leipzig hat einen Algorithmus entwickelt, der Beobachtungsdaten der App Flora Incognita analysiert. Daraus lassen sich ökologische Muster ableiten, die Aufschluss über die Auswirkungen des Klimawandels auf die Pflanzenwelt geben.
Eine neue Studie zeigt eine natürliche Lösung zur Abschwächung von Auswirkungen des Klimawandels wie extremen Wetterereignissen auf. Forschende fanden heraus, dass eine vielfältige Pflanzenwelt als Puffer gegen Schwankungen der Bodentemperatur wirkt. Dieser Puffer wiederum kann einen entscheidenden Einfluss auf wichtige Ökosystemprozesse haben.
Eine Tonne CO2 aus der Luft holen und so eine Tonne Emissionen ungeschehen machen? Haut nicht hin, sagt eine Studie. Und liefert vier Einwände mit Blick auf die Erdsysteme.
Der neue Bericht des Global Carbon Project zeigt: Die fossilen CO2-Emissionen werden 2023 ein Rekordhoch erreichen. Bleiben die Emissionen so hoch, wird das verbliebene Kohlenstoffbudget zur Einhaltung der 1,5°C-Grenze voraussichtlich in sieben Jahren aufgebraucht sein. Die Emissionen aus der Landnutzung nehmen zwar leicht ab, sind aber immer noch zu hoch, um durch nachwachsende Wälder und Aufforstung kompensiert werden zu können.
Die Kohlenstoffspeicherung im Boden kann dazu beitragen, den Klimawandel abzumildern. Eine neue Studie zeigt, dass die Bildung mineralgebundener organischer Substanz in erster Linie von der Mineralart abhängt, aber auch durch Landnutzung und Bewirtschaftungsintensität beeinflusst wird.