Kauwe, M. G. D.; Medlyn, B. E.; Walker, A. P.; Zaehle, S.; Asao, S.; Guenet, B.; Harper, A. B.; Hickler, T.; Jain, A.; Luo, Y.et al.; Lu, X.; Luus, K.; Parton, W. J.; Shu, S.; Wang, Y.-P.; Werner, C.; Xia, J.; Pendall, E.; Morgan, J. A.; Ryan, E. M.; Carrillo, Y.; Dijkstra, F. A.; Zelikova, T. J.; Norby, R. J.: Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO2 Enrichment experiment. Global Change Biology 23 (9), pp. 3623 - 3645 (2017)
Ryan, E. M.; Ogle, K.; Peltier, D.; Walker, A. P.; Kauwe, M. G. D.; Medlyn, B. E.; Williams, D. G.; Parton, W.; Asao, S.; Guenet, B.et al.; Harper, A. B.; Lu, X.; Luus, K.; Zaehle, S.; Shu, S.; Werner, C.; Xia, J.; Pendall, E.: Gross primary production responses to warming, elevated CO2, and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland. Global Change Biology 23 (8), pp. 3092 - 3106 (2017)
Karion, A.; Sweeney, C.; Miller, J. B.; Andrews, A. E.; Commane, R.; Dinardo, S.; Henderson, J. M.; Lindaas, J.; Lin, J. C.; Luus, K.et al.; Newberger, T.; Tans, P.; Wofsy, S. C.; Wolter, S.; Miller, C. E.: Investigating Alaskan methane and carbon dioxide fluxes using measurements from the CARVE tower. Atmospheric Chemistry and Physics 16 (8), pp. 5383 - 5389 (2016)
Kwon, M. J.; Heimann, M.; Kolle, O.; Luus, K.; Schuur, E. A. G.; Zimov, N.; Zimov, S. A.; Göckede, M.: Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics. Biogeosciences 13 (14), pp. 4219 - 4235 (2016)
Medlyn, B. E.; De Kauwe, M. G.; Zaehle, S.; Walker, A. P.; Duursma, R. A.; Luus, K.; Mishurov, M.; Pak, B.; Smith, B.; Wang, Y. P.et al.; Yang, X.; Crous, K. Y.; Drake, J. E.; Gimeno, T. E.; Macdonald, C. A.; Norby, R. J.; Power, S. A.; Tjoelker, M. G.; Ellsworth, D. S.: Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland. Global Change Biology 22 (8), pp. 2834 - 2851 (2016)
Norby, R. J.; Kauwe, M. G. D.; Domingues, T. F.; Duursma, R. A.; Ellsworth, D. S.; Goll, D. S.; Lapola, D. M.; Luus, K.; MacKenzie, A. R.; Medlyn, B. E.et al.; Pavlick, R.; Rammig, A.; Smith, B.; Thomas, R.; Thonicke, K.; Walker, A. P.; Yang, X.; Zaehle, S.: Model–data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytologist 209 (1), pp. 17 - 28 (2016)
Luus, K.; Lin, J. C.: The polar vegetation photosynthesis and respiration model: a parsimonious, satellite-data-driven model of high-latitude CO2 exchange. Geoscientific Model Development 8 (8), pp. 2655 - 2674 (2015)
Luus, K.; Gel, Y.; Lin, J. C.; Kelly, R. E. J.; Duguay, C. R.: Pan-Arctic linkages between snow accumulation and growing-season air temperature, soil moisture and vegetation. Biogeosciences 10 (11), pp. 7575 - 7597 (2013)
The BIOMASS satellite was successfully launched into orbit on 29 April 2025. The BIOMASS mission is designed to map and monitor global forests. It will map the structure of different forest types and provide data on above-ground biomass.
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
Extreme climate events endanger groundwater quality and stability, when rain water evades natural purification processes in the soil. This was demonstrated in long-term groundwater analyses using new analytical methods.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.