Stoner, S.; Trumbore, S. E.; González-Pérez, J. A.; Schrumpf, M.; Sierra, C. A.; Hoyt, A. M.; Chadwick, O.; Doetterl, S.: Relating mineral–organic matter stabilization mechanisms to carbon quality and age distributions using ramped thermal analysis. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 381 (2261), 20230139 (2023)
Stoner, S.; Schrumpf, M.; Hoyt, A. M.; Sierra, C. A.; Doetterl, S.; Galy, V.; Trumbore, S. E.: How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter. Biogeosciences 20 (15), pp. 3151 - 3163 (2023)
Sarquis, A.; Sierra, C. A.: Information content in time series of litter decomposition studies and the transit time of litter in arid lands. Biogeosciences 20 (9), pp. 1759 - 1771 (2023)
Giraldo, J. A.; Valle, J. I. d.; González-Caro, S.; David, D. A.; Taylor, T.; Tobón, C.; Sierra, C. A.: Tree growth periodicity in the ever-wet tropical forest of the Americas. Journal of Ecology 111 (4), pp. 889 - 902 (2023)
Sierra, C. A.; Quetin, G. R.; Metzler, H.; Mueller, M.: A decrease in the age of respired carbon from the terrestrial biosphere and increase in the asymmetry of its distribution. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 381 (2261), 20220200 (2023)
Wells, J. M.; Crow, S. E.; Sierra, C.; Deenik, J. L.; Carlson, K. M.; Meki, M. N.; Kiniry, J.: Edaphic controls of soil organic carbon in tropical agricultural landscapes. Scientific Reports 12, 21574 (2022)
Salazar, A.; Sanchez, A.; Dukes, J. S.; Salazar, J. F.; Clerici, N.; Lasso, E.; Sanchez-Pacheco, S. J.; Rendon, A. M.; Villegas, J. C.; Sierra, C.et al.; Poveda, G.; Quesada, B.; Uribe, M. R.; Rodríguez-Buritica, S.; Ungar, P.; Pulido-Santacruz, P.; Ruiz-Morato, N.; Arias, P. A.: Peace and the environment at the crossroads: Elections in a conflict-troubled biodiversity hotspot. Environmental Science and Policy 135, pp. 77 - 85 (2022)
Sarquis, A.; Siebenhart, I. A.; Austin, A. T.; Sierra, C. A.: Aridec: an open database of litter mass loss from aridlands worldwide with recommendations on suitable model applications. Earth System Science Data 14 (7), pp. 3471 - 3488 (2022)
Vásquez, M.; Lara, W.; del Valle, J. I.; Sierra, C.: Reconstructing past fossil-fuel CO2 concentrations using tree rings and radiocarbon in the urban area of Medellín, Colombia. Environmental Research Letters 17 (5), 055008 (2022)
Chanca, I.; Trumbore, S. E.; Macario, K.; Sierra, C.: Probability distributions of radiocarbon in open linear compartmental systems at steady-state. Journal of Geophysical Research: Biogeosciences 127 (3), e2021JG006673 (2022)
Azizi-Rad, M.; Guggenberger, G.; Mad, Y.; Sierra, C. A.: Sensitivity of soil respiration rate with respect to temperature, moisture and oxygen under freezing and thawing. Soil Biology and Biochemistry 165, 108488 (2022)
Heckman, K.; Hicks Pries, C. E.; Lawrence, C. R.; Rasmussen, C.; Crow , S. E.; Hoyt, A. M.; von Fromm, S. F.; Shi, Z.; Stoner, S.; McGrath, C.et al.; Beem-Miller, J.; Berhe, A. A.; Blankinship, J. C.; Keiluweit, M.; Marín-Spiotta, E.; Monroe, J. G.; Plante, A. F.; Schimel, J.; Sierra, C.; Thompson, A.; Wagai, R.: Beyond bulk: Density fractions explain heterogeneity in global soil carbon abundance and persistence. Global Change Biology 28 (3), pp. 1178 - 1196 (2022)
Giraldo, J. A.; del Valle, J. I.; González-Caro, S.; Sierra, C.: Intra-annual isotope variations in tree rings reveal growth rhythms within the least rainy season of an ever-wet tropical forest. Trees 36 (3), pp. 1039 - 1052 (2022)
The BIOMASS satellite was successfully launched into orbit on 29 April 2025. The BIOMASS mission is designed to map and monitor global forests. It will map the structure of different forest types and provide data on above-ground biomass.
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
In the annual ranking of the world's most cited and thus most influential scientists, five authors from our institute are once again represented in 2024.
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.
The Chapter of the Order has elected the writer, philosopher and filmmaker Alexander Kluge and the mathematician Gerd Faltings as domestic members of the Order and the geologist Susan Trumbore and the literary scholar Stephen Greenblatt as foreign members.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
When it comes to studying climate change, we generally assume that the total amount of carbon emissions determines how much the planet will warm. A new study suggests that not only the amount, but also the timing of those emissions controls the amount of surface warming that occurs on human time-scale.
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.
Tropical forests are continuously being fragmented and damaged by human influences. Using remote sensing data and cutting-edge data analysis methods, researchers can now show for the first time that the impact of this damage is greater than previously estimated.