Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M. D.; Neigh, C. S.R.; Reichstein, M.: Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sensing 5 (5), S. 2113 - 2144 (2013)
Benali, A.; Carvalho, A.; Nunes, J.; Carvalhais, N.; Santos, A.: Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment 124, S. 108 - 121 (2012)
Wu, J.; Van Der Linden, L.; Lasslop, G.; Carvalhais, N.; Pilegaard, K.; Beier, C.; Ibrom, A.: Effects of climate variability and functional changes on the interannual variation of the carbon balance in a temperate deciduous forest. Biogeosciences 9 (2), S. 715 - 715 (2012)
Mahecha, M. D.; Reichstein, M.; Carvalhais, N.; Lasslop, G.; Lange, H.; Seneviratne, S. I.; Vargas, R.; Ammann, C.; Arain, M. A.; Cescatti, A.et al.; Janssens, I. A.; Migliavacca, M.; Montagnani, L.; Richardson, A. D.: Response to Comment on "Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level". Science 331 (6022), S. 1265d (2011)
Carvalhais, N.; Reichstein, M.; Ciais, P.; Collatz, G. J.; Mahecha, M. D.; Montagnani, L.; Papale, D.; Rambal, S.; Seixas, J.: Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints. Global Change Biology 16 (10), S. 2813 - 2829 (2010)
Carvalhais, N.; Reichstein, M.; Collatz, G. J.; Mahecha, M. D.; Migliavacca, M.; Neigh, C. S. R.; Tomelleri, E.; Benali, A. A.; Papale, D.; Seixas, J.: Deciphering the components of regional net ecosystem fluxes following a bottom-up approach for the Iberian Peninsula. Biogeosciences 7 (11), S. 3707 - 3729 (2010)
Mahecha, M. D.; Reichstein, M.; Carvalhais, N.; Lasslop, G.; Lange, H.; Seneviratne, S. I.; Vargas, R.; Ammann, C.; Arain, M. A.; Cescatti, A.et al.; Janssens, I. A.; Migliavacca, M.; Montagnani, L.; Richardson, A. D.: Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level. Science 329 (5993), S. 838 - 840 (2010)
Williams, M.; Richardson, A. D.; Reichstein, M.; Stoy, P. C.; Peylin, P.; Verbeeck, H.; Carvalhais, N.; Jung, M.; Hollinger, D. Y.; Kattge, J.et al.; Leuning, R.; Luo, Y.; Tomelleri, E.; Trudinger, C. M.; Wang, Y. P.: Improving land surface models with FLUXNET data. Biogeosciences 6 (7), S. 1341 - 1359 (2009)
Carvalhais, N.; Reichstein, M.; Seixas, J.; Collatz, G. J.; Pereira, J. S.; Berbigier, P.; Carrara, A.; Granier, A.; Montagnani, L.; Papale, D.et al.; Rambal, S.; Sanz, M. J.; Valentini, R.: Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval. Global Biogeochemical Cycles 22 (2), S. Gb2007 (2008)
Mahecha, M. D.; Reichstein, M.; Lange, H.; Carvalhais, N.; Bernhofer, C.; Grunwald, T.; Papale, D.; Seufert, G.: Characterizing ecosystem-atmosphere interactions from short to interannual time scales. Biogeosciences 4 (5), S. 743 - 758 (2007)
Nunes, J. P.; Vieira, G. N.; Seixas, J.; Gonçalves, P.; Carvalhais, N.: Evaluating the MEFIDIS model for runoff and soil erosion prediction during rainfall events. Catena 61 (2-3), S. 210 - 228 (2005)
Reichstein, M.; Richardson, A. D.; Migliavacca, M.; Carvalhais, N.: Plant–environment interactions across multiple scales. In: Ecology and the Environment, S. 1 - 27 (Hg. Monson, R. K.). Springer, New York (2014)
Am 29. April 2025 wurde der BIOMASS-Satellit erfolgreich in die Umlaufbahn gebracht. Die BIOMASS-Mission dient der Kartierung und Überwachung globaler Wälder. Sie soll die Struktur verschiedener Waldtypen kartieren und Daten zur oberirdischen Biomasse liefern.
Europa ist durch Dürren oder Starkregen besonders stark betroffen. KI kann Frühwarnsysteme für Extremwetterereignisse und deren Folgen unterstützen und dadurch Schäden minimieren.
Dank FLUXCOM-X, der nächsten Generation Daten-getriebener, KI-basierter Erdsystemmodelle, können Forschende den Stoffwechsel der Erde nun in noch nie dagewesener Detailtiefe sehen – überall an Land und zu jeder Stunde des Tages.
Im alljährlichen Ranking der weltweit meistzitierten und damit einflussreichen Wissenschaftler*innen sind 2024 erneut fünf Autoren unseres Instituts vertreten.
Das Global Carbon Project zeigt, dass die fossilen CO2-Emissionen auch 2024 weiter ansteigen. Es fehlen Anzeichen für den schnellen und starken Rückgang der Emissionen, der nötig wäre, um die Auswirkungen des Klimawandels einzugrenzen.
Ein Forschungsteam hat einen Ansatz entwickelt, KI in Erdsystem-Modelle zu integrieren, und hierzu zwei Perspektiven zukünftiger Forschungsschwerpunkte veröffentlicht.
EU fördert internationales Forschungsprojekt AI4PEX, um Erdsystemmodelle und damit wissenschaftliche Vorhersagen des Klimawandels weiter zu verbessern. Beteiligte Wissenschaftler*innen aus 9 Ländern trafen sich bereits Ende Mai 2024 zum Projektstart am federführenden MPI für Biogeochemie in Jena.
Stickstoffdünger und Stickoxide aus fossilen Brennstoffen belasten die Luft und das Trinkwasser, führen zur Überdüngung von Gewässern und Landökosystemen, reduzieren die Artenvielfalt und schädigen die Ozonschicht. Was das Klima angeht, haben sie unter dem Strich aber eine kühlende Wirkung.
Die anthropogenen Emissionen von Lachgas (N2O), ein pro Molekül deutlich stärkeres Treibhausgas als Kohlenstoffdioxid oder Methan, stiegen zwischen 1980 und 2020 um etwa 40% an. Im Jahr 2020 erreichten die anthropogenen Emissionen in die Atmosphäre mehr als 10 Millionen Tonnen pro Jahr, so der neue Bericht „Global Nitrous Oxide Budget 2024“ des Global Carbon Project.
Eine kürzlich in Nature veröffentlichte Studie unter Beteiligung von Sönke Zaehle legt nahe, dass Eucalyptusbäume nicht von steigendem CO2 profitieren. Ein erhöhter CO2-Gehalt führt dazu, dass die Bodenmikroorganismen Phosphor stärker binden. Dieser Mineralstoff im Boden, der für das Wachstum der Bäume unerlässlich ist, steht somit weniger zur Verfügung.
Das neue Forschungsprojekt "PollenNet" soll mit Hilfe von Künstlicher Intelligenz die präzise Vorhersage der Verbreitung von Pollen ermöglichen. Um die Vorsorge vor Allergien zu verbessern, bringen Expertinnen und Experten fachübergreifend neueste Erkenntnisse aus den verschiedensten Bereichen zusammen.
Wenn Flüsse über die Ufer treten, können die Folgen verheerend sein. Mit Methoden des Erklärbaren Maschinellen Lernens haben Forschende nachgewiesen, dass Überschwemmungen extremer ausfallen, wenn mehrere Faktoren an deren Entstehung beteiligt sind.