Kauwe, M. G. D.; Medlyn, B. E.; Walker, A. P.; Zaehle, S.; Asao, S.; Guenet, B.; Harper, A. B.; Hickler, T.; Jain, A.; Luo, Y.et al.; Lu, X.; Luus, K.; Parton, W. J.; Shu, S.; Wang, Y.-P.; Werner, C.; Xia, J.; Pendall, E.; Morgan, J. A.; Ryan, E. M.; Carrillo, Y.; Dijkstra, F. A.; Zelikova, T. J.; Norby, R. J.: Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO2 Enrichment experiment. Global Change Biology 23 (9), pp. 3623 - 3645 (2017)
Ryan, E. M.; Ogle, K.; Peltier, D.; Walker, A. P.; Kauwe, M. G. D.; Medlyn, B. E.; Williams, D. G.; Parton, W.; Asao, S.; Guenet, B.et al.; Harper, A. B.; Lu, X.; Luus, K.; Zaehle, S.; Shu, S.; Werner, C.; Xia, J.; Pendall, E.: Gross primary production responses to warming, elevated CO2, and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland. Global Change Biology 23 (8), pp. 3092 - 3106 (2017)
Karion, A.; Sweeney, C.; Miller, J. B.; Andrews, A. E.; Commane, R.; Dinardo, S.; Henderson, J. M.; Lindaas, J.; Lin, J. C.; Luus, K.et al.; Newberger, T.; Tans, P.; Wofsy, S. C.; Wolter, S.; Miller, C. E.: Investigating Alaskan methane and carbon dioxide fluxes using measurements from the CARVE tower. Atmospheric Chemistry and Physics 16 (8), pp. 5383 - 5389 (2016)
Kwon, M. J.; Heimann, M.; Kolle, O.; Luus, K.; Schuur, E. A. G.; Zimov, N.; Zimov, S. A.; Göckede, M.: Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics. Biogeosciences 13 (14), pp. 4219 - 4235 (2016)
Medlyn, B. E.; De Kauwe, M. G.; Zaehle, S.; Walker, A. P.; Duursma, R. A.; Luus, K.; Mishurov, M.; Pak, B.; Smith, B.; Wang, Y. P.et al.; Yang, X.; Crous, K. Y.; Drake, J. E.; Gimeno, T. E.; Macdonald, C. A.; Norby, R. J.; Power, S. A.; Tjoelker, M. G.; Ellsworth, D. S.: Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland. Global Change Biology 22 (8), pp. 2834 - 2851 (2016)
Norby, R. J.; Kauwe, M. G. D.; Domingues, T. F.; Duursma, R. A.; Ellsworth, D. S.; Goll, D. S.; Lapola, D. M.; Luus, K.; MacKenzie, A. R.; Medlyn, B. E.et al.; Pavlick, R.; Rammig, A.; Smith, B.; Thomas, R.; Thonicke, K.; Walker, A. P.; Yang, X.; Zaehle, S.: Model–data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytologist 209 (1), pp. 17 - 28 (2016)
Luus, K.; Lin, J. C.: The polar vegetation photosynthesis and respiration model: a parsimonious, satellite-data-driven model of high-latitude CO2 exchange. Geoscientific Model Development 8 (8), pp. 2655 - 2674 (2015)
Luus, K.; Gel, Y.; Lin, J. C.; Kelly, R. E. J.; Duguay, C. R.: Pan-Arctic linkages between snow accumulation and growing-season air temperature, soil moisture and vegetation. Biogeosciences 10 (11), pp. 7575 - 7597 (2013)
The BIOMASS satellite was successfully launched into orbit on 29 April 2025. The BIOMASS mission is designed to map and monitor global forests. It will map the structure of different forest types and provide data on above-ground biomass.
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.
A study by Leipzig University, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv) and the MPI for Biogeochemistry shows that gaps in the canopy of a mixed floodplain forest have a direct influence on the temperature and moisture in the forest soil, but only a minor effect on soil activity.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.
Tropical forests are continuously being fragmented and damaged by human influences. Using remote sensing data and cutting-edge data analysis methods, researchers can now show for the first time that the impact of this damage is greater than previously estimated.
The new research project "PollenNet" aims to use artificial intelligence to accurately predict the spread of pollen. In order to improve allergy prevention, experts are bringing together the latest interdisciplinary findings from a wide range of fields.