Peng, T. H.; Broecker, W. S.; Freyer, H. D.; Trumbore, S. E.: A deconvolution of the tree-ring based delta-13C record. Journal of Geophysical Research: Atmospheres 88 (NC6), S. 3609 - 3620 (1983)
Schuur, E. A.G.; Druffel, E. R.M.; Trumbore, S. E. (Hg.): Radiocarbon and Global Change: Mechanisms, Applications and Laboratory Techniques. Springer, Cham (2016), 315 S.
Rapalee, G.; Davidson, E. A.; Harden, J. W.; Trumbore, S. E.; Veldhuis, H.; Saf, S. A. F.: Mapping drainage patterns and carbon stocks of boreal forest soils in northern Manitoba. Soc Amer Foresters, Washington (1996), 414-415 S.
Schuur, E. A. G.; Trumbore, S. E.; Druffel, E. R. M.; Southon, J. R.; Steinhof, A.; Taylor, R. E.; Turnbull, J. C.: Radiocarbon and the global carbon cycle. In: Radiocarbon and Global Change, S. 1 - 20 (Hg. Schuur, E. A. G.; Druffel, E. R. M.; Trumbore, S. E.). Springer, Cham (2016)
Trumbore, S. E.; Sierra, C.; Pries, C. E. H.: Radiocarbon nomenclature, theory, models, and interpretation: measuring age, determing cycling rates, and tracing source pools. In: Radiocarbon and Global Change, S. 45 - 82 (Hg. Schuur, E. A. G.; Druffel, E. R. M.; Trumbore, S. E.). Springer, Cham (2016)
Trumbore, S. E.; Xu, X.; Santos, G. M.; Czimczik, C. I.; Beaupré, S. R.; Pack, M. A.; Hopkins, F. M.; Stills, A.; Lupascu, M.; Ziolkowski, L.: Preparation for radiocarbon analysis. In: Radiocarbon and Global Change, S. 279 - 315 (Hg. Schuur, E. A. G.; Druffel, E. R. M.; Trumbore, S. E.). Springer, Cham (2016)
Trumbore, S. E.; Camargo, P. B. D.: Soil Carbon Dynamics. In: Amazonia and Global Change, Bd. 186, S. 451 - 462 (Hg. Keller, M.; Bustamante, M.; Gash, J.; Dias, P. S.) (2009)
Asman, W. A. H.; Andreae, M. O.; Conrad, R.; Denmead, O. T.; Ganzeveld, L. N.; Helder, W.; Kaminski, T.; Sofiev, M. A.; Trumbore, S. E.: Working group report how can fluxes of trace gases be validated between different scales? In: Approaches to Scaling of Trace Gas Fluxes in Ecosystems, S. 87 - 97 (Hg. Bouwman, A. F.). Elsevier Science Bv, Amsterdam (1998)
Trumbore, S. E.: Role of isotopes and tracers in scaling trace gas fluxes. In: Approaches to Scaling of Trace Gas Fluxes in Ecosystems, S. 259 - 274 (Hg. Bouwman, A. F.). Elsevier Science Bv, Amsterdam (1998)
Aravena, R.; Schiff, S. L.; Warner, B.; Devito, K.; Trumbore, S. E.: Application of environmental isotopes in hydrological and geochemical studies in wetlands. In: Isotopes in Water Resources Management, Bd. 1, S. 361 - 363. Int Atomic Energy Agency, Vienna (1996)
Post, W. M.; Anderson, D. W.; Dahmke, A.; Houghton, R. A.; Huc, A. Y.; Lassiter, R.; Najjar, R. G.; Neue, H. U.; Pedersen, T. F.; Trumbore, S. E.et al.; Vaikmae, R.: Group report: What is the role of nonliving organic matter cycling on the global scale? In: Role of Nonliving Organic Matter in the Earth's Carbon Cycle, S. 155 - 174 (Hg. Zepp, R. G.; Sonntag, C.). John Wiley & Sons Ltd, Chichester (1995)
Trumbore, S. E.; Druffel, E. R. M.: Carbon isotopes for characterizing sources and turnover of nonliving organic matter. In: Role of Nonliving Organic Matter in the Earth's Carbon Cycle, S. 7 - 22 (Hg. Zepp, R. G.; Sonntag, C.). John Wiley & Sons Ltd, Chichester (1995)
Trumbore, S. E.; Barros, A. P.; Becker, T. W.; Davidson, E. A.; Ehlmann, B. L.; Gruber, N.; Hofmann, E. E.; Hudson, M. K.; Illangasekare, T. H.; Kang, S.et al.; Montanari, A.; Nimmo, F.; Parsons, T.; Salters, V. J. M.; Schimel, D.; Stevens, B.; Wuebbles, D. J.; Zeitler, P.; Zhu, T.: Thank you to our 2021 peer reviewers, AGU Advances 3, (2022)
Trumbore, S. E.; Barros, A. P.; Becker, T. W.; Davidson, E. A.; Ehlmann, B. L.; Gruber, N.; Hofmann, E.; Hudson, M. K.; Illangasekare, T. H.; Kang, S.et al.; Malanotte-Rizzoli, P.; Montanari, A.; Nimmo, F.; Parsons, T.; Salters, V. J. M.; Schimel, D.; Stevens, B.; Wuebbles, D. J.; Zeitler, P.; Zhu, T.: Thank you to our 2020 peer reviewers, AGU Advances 2, (2021)
Vom griechischen Philosophen Aristoteles über Charles Darwin bis heute haben sich Wissenschaftlerinnen und Wissenschaftler mit dieser grundlegenden Frage der Biologie beschäftigt. Entgegen der öffentlichen Wahrnehmung ist sie jedoch immer noch weitgehend ungelöst. Forschende haben nun einen neuen Ansatz für das Auffinden und die Abgrenzung von Arten mithilfe von künstlicher Intelligenz (KI) vorgestellt.
Die anthropogenen Emissionen von Lachgas (N2O), ein pro Molekül deutlich stärkeres Treibhausgas als Kohlenstoffdioxid oder Methan, stiegen zwischen 1980 und 2020 um etwa 40% an. Im Jahr 2020 erreichten die anthropogenen Emissionen in die Atmosphäre mehr als 10 Millionen Tonnen pro Jahr, so der neue Bericht „Global Nitrous Oxide Budget 2024“ des Global Carbon Project.
Eine kürzlich in Nature veröffentlichte Studie unter Beteiligung von Sönke Zaehle legt nahe, dass Eucalyptusbäume nicht von steigendem CO2 profitieren. Ein erhöhter CO2-Gehalt führt dazu, dass die Bodenmikroorganismen Phosphor stärker binden. Dieser Mineralstoff im Boden, der für das Wachstum der Bäume unerlässlich ist, steht somit weniger zur Verfügung.
Eine neue Studie zeigt eine natürliche Lösung zur Abschwächung von Auswirkungen des Klimawandels wie extremen Wetterereignissen auf. Forschende fanden heraus, dass eine vielfältige Pflanzenwelt als Puffer gegen Schwankungen der Bodentemperatur wirkt. Dieser Puffer wiederum kann einen entscheidenden Einfluss auf wichtige Ökosystemprozesse haben.
Die Kohlenstoffspeicherung im Boden kann dazu beitragen, den Klimawandel abzumildern. Eine neue Studie zeigt, dass die Bildung mineralgebundener organischer Substanz in erster Linie von der Mineralart abhängt, aber auch durch Landnutzung und Bewirtschaftungsintensität beeinflusst wird.
Die Deutsche Forschungsgemeinschaft (DFG) fördert eine Forschungsgruppe im Jena Experiment für weitere vier Jahre mit insgesamt etwa fünf Millionen Euro. Der neue Fokus liegt auf der stabilisierenden Wirkung von Biodiversität gegen extreme Klimaereignisse wie Hitze, Frost oder Starkregen.
Eine neue Studie zeigt, dass die Effizienz der mikrobiellen Kohlenstoffnutzung mindestens viermal stärker als andere biologische Faktoren oder Umweltbedingungen die globale Speicherung und Verteilung von Kohlenstoff im Boden beeinflusst.
Am Ende der Trockenzeit kommt es über dem australischen Kontinent zu jährlich wiederkehrenden CO2-Pulsen in der Atmosphäre. Neue Analysen zeigen, dass besonders viel CO2 freigesetzt wird, wenn starke Regenfälle auf ausgetrocknete Böden treffen und dort Mikroorganismen aktiviert werden. Dies deutet darauf hin, dass trockene Regionen einen größeren Einfluss auf die Variationen des globalen Kohlenstoffkreislaufs haben als bisher angenommen.
Extreme Klimaereignisse nehmen in Ausmaß und Häufigkeit zu, während die Biodiversität abnimmt. Forschende vom MPI-BGC, der Uni Leipzig, des Deutschen Zentrums für integrative Biodiversitäts-forschung (iDiv) und weiteren europäischen Einrichtungen bringen ihre Sorge zum Ausdruck, dass sich diese beiden Trends gegenseitig verstärken könnten.
Eine großangelegte Studie weist den Nutzen von hoher Biodiversität auf Wiesen- und Weideflächen für eine Vielzahl von Ökosystemleistungen und Interessengruppen nach.