Rzanny, M.; Bebber, A.; Wittich, H. C.; Fritz, A.; Boho, D.; Mäder, P.; Wäldchen, J.: More than rapid identification—Free plant identification apps can also be highly accurate. People and Nature 6 (6), S. 2178 - 2181 (2024)
Wäldchen, J.; Wittich, H. C.; Rzanny, M.; Fritz, A.; Mäder, P.: Towards more effective identification keys: A study of people identifying plant species characters. People and Nature 4 (6), S. 1603 - 1615 (2022)
Katal, N.; Rzanny, M.; Mäder, P.; Wäldchen, J.: Deep learning in plant phenological research: A systematic literature review. Frontiers in Plant Science 13, 805738 (2022)
Schmid, B.; Schmitz, M.; Rzanny, M.; Scherer-Lorenzen, M.; Mwangi, P. N.; Weisser, W. W.; Hector, A.; Schmid, R.; Flynn, D. F. B.: Removing subordinate species in a biodiversity experiment to mimic observational field studies. Grassland Research 1 (1), S. 53 - 62 (2022)
Mahecha, M. D.; Rzanny, M.; Kraemer, G.; Mäder, P.; Seeland, M.; Wäldchen, J.: Crowd-sourced plant occurrence data provide a reliable description of macroecological gradients. Ecography 44 (8), S. 1131 - 1142 (2021)
Mäder, P.; Boho, D.; Rzanny, M.; Seeland, M.; Wittich, H. C.; Deggelmann, A.; Wäldchen, J.: The Flora Incognita app – interactive plant species identfication. Methods in Ecology and Evolution 12 (7), S. 1335 - 1342 (2021)
Rzanny, M.; Mäder, P.; Deggelmann, A.; Chen, M.; Wäldchen, J.: Flowers, leaves or both? How to obtain suitable images for automated plant identification. Plant Methods 15, 77 (2019)
Hines, J.; Giling, D. P.; Rzanny, M.; Voigt, W.; Meyer, S. T.; Weisser, W. W.; Eisenhauer, N.; Ebeling, A.: A meta‐food web for invertebrate species collected in a European grassland. Ecology 100 (6), e02679 (2019)
Seeland, M.; Rzanny, M.; Boho, D.; Wäldchen, J.; Mäder, P.: Image-based classification of plant genus and family for trained and untrained plant species. BMC Bioinformatics 20, 4 (2019)
Wittich, H. C.; Seeland, M.; Wäldchen, J.; Rzanny, M.; Mäder, P.: Recommending plant taxa for supporting on-site species identification. BMC Bioinformatics 19, 190 (2018)
Ebeling, A.; Rzanny, M.; Lange, M.; Eisenhauer, N.; Hertzog, L. R.; Meyer, S. T.; Weisser, W. W.: Plant diversity induces shifts in the functional structure and diversity across trophic levels. Oikos 127 (2), S. 208 - 219 (2018)
Eine Studie der Universität Leipzig, des Deutschen Zentrums für integrative Biodiversitätsforschung Halle-Jena-Leipzig (iDiv) und des MPI für Biogeochemie zeigt, dass Lücken im Kronendach eines Auenmischwalds einen direkten Einfluss auf die Temperatur und Feuchtigkeit im Waldboden haben, jedoch nur geringe Auswirkungen auf die Bodenaktivität.
Vom griechischen Philosophen Aristoteles über Charles Darwin bis heute haben sich Wissenschaftlerinnen und Wissenschaftler mit dieser grundlegenden Frage der Biologie beschäftigt. Entgegen der öffentlichen Wahrnehmung ist sie jedoch immer noch weitgehend ungelöst. Forschende haben nun einen neuen Ansatz für das Auffinden und die Abgrenzung von Arten mithilfe von künstlicher Intelligenz (KI) vorgestellt.
Ein Forschungsteam unter der Leitung des Deutschen Zentrums für integrative Biodiversitätsforschung (iDiv) und der Universität Leipzig hat einen Algorithmus entwickelt, der Beobachtungsdaten der App Flora Incognita analysiert. Daraus lassen sich ökologische Muster ableiten, die Aufschluss über die Auswirkungen des Klimawandels auf die Pflanzenwelt geben.
Das neue Forschungsprojekt "PollenNet" soll mit Hilfe von Künstlicher Intelligenz die präzise Vorhersage der Verbreitung von Pollen ermöglichen. Um die Vorsorge vor Allergien zu verbessern, bringen Expertinnen und Experten fachübergreifend neueste Erkenntnisse aus den verschiedensten Bereichen zusammen.
Pflanzenbeobachtungen, die mit Pflanzenbestimmungs-Apps wie Flora Incognita gesammelt werden, erlauben Aussagen über die Entwicklungsstadien von Pflanzen - sowohl kleinräumig als auch europaweit.
Die Pflanzenerkennungs-App Flora Incognita erhält den diesjährigen Sonja Bernadotte-Preis für ihre Bedeutung im Naturbildungswesen für alle Altersgruppen bei gleichzeitig hohem wissenschaftlichen Anspruch.
Deutschlands beliebteste Pflanzenbestimmungs-App „Flora Incognita“ wurde durch eine neue Künstliche Intelligenz weiter aufgewertet. Dadurch verdreifacht sich die Anzahl der bestimmbaren Pflanzenarten auf rund 16.000. Außerdem steht die App nun in 20 verschiedenen Sprachen zur Verfügung und zusätzlich auch im Offline-Modus.
Das Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) heißt seine Gäste am 20. und 21. August wieder zum Tag der offenen Tür der Bundesregierung herzlich willkommen. Als eines der erfolgreichen unterstützten Projekte wurde auch Flora Incognita gebeten, an der Ausstellung für die Besucher teilzunehmen.
Das Ausstellungsschiff MS Wissenschaft startete am 03.05.2022 auf Deutschlandtour, auch mit Flora Incognita an Bord. Die App zur Pflanzenbestimmung ist eines von 25 ausgewählten Exponaten, die Menschen jeden Alters in dem schwimmenden Science Center zum Entdecken, Ausprobieren und Mitmachen einladen.
Smartphone-Apps zur Pflanzenbestimmung wie „Flora Incognita“ können nicht nur Pflanzenarten erkennen, sie erfassen auch großräumige ökologische Muster. Diese Muster stimmen mit Langzeit-Kartierungen der deutschen Flora erstaunlich gut überein, obwohl sie in kürzester Zeit gewonnen wurden und stark vom Verhalten der App-Nutzer beeinflusst werden.
Mobile apps like Flora Incognita that allow automated identification of wild plants cannot only identify plant species, but also uncover large scale ecological patterns. This opens up new perspectives for rapid detection of biodiversity changes. These are the key results of a study led by a team of researchers from Central Germany, which has recently been published in Ecography.
Smartphone-Apps zur Pflanzenbestimmung wie „Flora Incognita“ können nicht nur Pflanzenarten erkennen, sie erfassen auch großräumige ökologische Muster. Damit eröffnen sich neue Perspektiven für die schnelle Erfassung von Veränderungen der Biodiversität. Das sind die wesentlichen Erkenntnisse einer Studie, die von einem Forscherteam aus Mitteldeutschland durchgeführt und in der Zeitschrift Ecography veröffentlicht wurde.